

If $\log_5(y) = -0.1$, $\log_5(c) = -1.8$, and $\log_5(25y^5c^5d^5) = -13.5$, what is the value of $\log_5(d)$?

- A) -1.5
- B) -1.4
- C) -1.3
- D) -1.2

Solution

$$-13.5 = \log_5(25y^5c^5d^5)$$

$$-13.5 = \log_5(25) + \log_5(y^5) + \log_5(c^5) + \log_5(d^5)$$

$$-13.5 = \log_5(5^2) + \log_5(y^5) + \log_5(c^5) + \log_5(d^5)$$

$$-13.5 = 2\log_5(5) + 5\log_5(y) + 5\log_5(c) + 5\log_5(d)$$

$$-13.5 = 2(1) + 5\log_5(y) + 5\log_5(c) + 5\log_5(d)$$

$$-13.5 = 2(1) + 5(-0.1) + 5(-1.8) + 5\log_5(d)$$

$$-13.5 = -7.5 + 5\log_5(d)$$

$$-6 = 5\log_5(d)$$

$$-1.2 = \log_5(d)$$

 (\mathbf{D})

Rewrite third equation.

Rewrite using log property.

Rewrite 25 as 5^2 .

Rewrite using log property.

Evaluate $\log_5(5)$ as 1.

Substitute $\log_5(y) = -0.1$, $\log_5(c) = -1.8$.

Simplify.

Add 7.5 to both sides.

Divide both sides by 5.

Answer.