$$
s(t)=-5 t^{2}+30 t+80
$$

In general, an object moving through the air can be treated as a point mass instead of an extended object. A physics student knows that the mass of a large exoplanet is 250 times the mass of the Earth. He wants to simulate throwing an object directly upward in the air on the exoplanet with an initial velocity, v_{0}, of $30 \mathrm{~m} / \mathrm{s}$ from an initial height, s_{0}, of 80 m with gravitational acceleration, a, of $10 \mathrm{~m} / \mathrm{s}^{2}$. The position, s, above the ground, can be expressed as a function of time, t. The object reaches its maximum height at a time $t_{1}=v_{0} / a$. The velocity of the object in the vertical direction, at any time, t, can be represented as $v(t)=30-10 t$. What is the velocity of the object in m / s at a time $t_{2}=4.5$ seconds after the object reaches its maximum height?
A) $-47 \mathrm{~m} / \mathrm{s}$
B) $-46 \mathrm{~m} / \mathrm{s}$
C) $-45 \mathrm{~m} / \mathrm{s}$
D) $-44 \mathrm{~m} / \mathrm{s}$

Solution

$t_{1}=\frac{v_{0}}{a}$	Write second equation.
$t_{1}=\frac{30}{10}$	Evaluate for $v_{0}=30, a=10$.
$t_{1}=3$	Simplify.
$t=t_{1}+t_{2}$	Define time required equation.
$t=3+4.5$	Evaluate for $t_{1}=3, t_{2}=4.5$.
$t=7.5$	Add.
$v(t)=30-10 t$	Write third equation.
$v(7.5)=30-10(7.5)$	Substitute $t=7.5$.
$v(7.5)=-45$	Simplify
(C)	Answer.

